Exact solution for a two-level atom in radiation fields and the Freeman resonances
نویسندگان
چکیده
Using techniques of complex analysis in an algebraic approach, we solve the wave equation for a two-level atom interacting with a monochromatic light field exactly. A closed-form expression for the quasi-energies is obtained, which shows that the Bloch-Siegert shift is always finite, regardless of whether the original or the shifted level spacing is an integral multiple of the driving frequency, ω. We also find that the wave functions, though finite when the original level spacing is an integral multiple of ω, become divergent when the intensity-dependent shifted energy spacing is an integral multiple of the photon energy. This result provides, for the first time in the literature, an ab-initio theoretical explanation for the occurrence of the Freeman resonances observed in above-threshold ionization experiments. PACS number(s): 32.80.Rm, 42.65.Ky, 12.20Ds, 03.65.Nk
منابع مشابه
A Non-Demolition Photon Counting Method by Four-Level Inverted Y-Type Atom
The semi-classical model of atom-field interaction has been fully studied for some multilevel atoms, e.g. Vee, L, Cascade X , Y, and inverted Y and so on. This issue is developed into the full-quantum electrodynamics formalism, where the probe and coupling electromagnetic fields are quantized. In this article, we investigate the full-quantum model of absorption and dispersion spectrum of trappe...
متن کاملQuantization of electromagnetic fields in the presence of a spherical semiconductor quantum dot and spontaneous decay of an excited atom doped in this nanostructure
In this paper we consider electromagnetic field quantization in the presence of a dispersive and absorbing semiconductor quantum dot. By using macroscopic approach and Green's function method, quantization of electromagnetic field is investigated. Interaction of a two-level atom , which is doped in a semiconductor quantum dot, with the quantized field is considered and its spontaneous emission ...
متن کاملEntanglement of an Atom and Its Spontaneous Emission Fields via Spontaneously Generated Coherence
The entanglement between a ?-type three-level atom and its spontaneous emission fields is investigated. The effect of spontaneously generated coherence (SGC) on entanglement between the atom and its spontaneous emission fields is then discussed. We find that in the presence of SGC the entanglement between the atom and its spontaneous emission fields is completely phase dependent, while in absen...
متن کاملNon-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution
Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...
متن کاملمتوسط گیری کوانتومی و تشدیدها: اتم دو ترازی در یک میدان کلاسیکی تک مد
We use a nonperturbative method based on quantum averaging and an adapted from of resonant transformations to treat the resonances of the Hamiltonian of a two-level atom interacting with a one-mode classical field in Floquet formalism. We illustrate this method by extraction of effective Hamiltonians of the system in two regimes of weak and strong coupling. The results obtained in the strong-...
متن کامل